Recent discovery of new superconductors including pnictogen atoms

A. Iyo1,2, Y. Yanagi1,3, H. Kito1, T. Kinjo1,3, T. Nishio1,3, S. Ishida1, N. Takeda1, K. Oka1
T. Yanagisawa1, I. Hase1, H. Eisaki1, Y. Yoshida1

1National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
2IMRA Material R&D Co., Ltd., 2-1, Asahi-machi, Kariya, Aichi, 448-0032, Japan
3Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

Since the discovery of iron-based high-T_c superconductors, a compound containing pnictogen atoms is attracting much attention as a candidate of a new superconductor. Recently, we have found various new superconductors containing Bi, P or Sb as follows.

Ba_2Bi_3 contains planar anionic Bi ribbon nets with four- and three-bonded Bi separated by cationic Ba layers (Fig. 1 (a)). Ba_2Bi_3 is found to be a superconductor with a T_c of 4.4 K. From the analysis of $\rho(T)$, the Debye temperature Θ_D and electron-phonon coupling constant λ_{e-p} are derived as 75.9 K and 1.0, respectively, indicating that Ba_2Bi_3 is a superconductor in the strong-coupling regime.

We have succeeded in synthesizing a series of intermetallic ternary phosphide chalcogenide superconductors, AP_xX_3 ($A = \text{Zr, Hf}; X = \text{S, Se}$) using high-pressure technique. These materials have a PbFCl-type structure (Fig. 1 (b)) when x is greater than 0.3. T_c changes systematically with x, yielding dome-like phase diagrams. The maximum T_c is achieved at approximately $x = 0.7$, at which point the T_c is 6.3, 5.5, 5.0 and 4.6 K for $\text{ZrP}_{2-x}\text{Se}_x$, $\text{HP}_{2-x}\text{Se}_x$, $\text{ZrP}_{2-x}\text{S}_x$ and $\text{HP}_{2-x}\text{S}_x$, respectively.

A Au-Sb-Te ternary system crystallizes into a simple cubic structure (α-Po-type) (Fig. 1 (c)) when it is quenched from high temperature under high pressure. We found that Au$_{0.125}$Sb$_{0.75}$Te$_{0.125}$ (AuSb$_8$Te) that are reported to be semiconductors above 20 K, is superconductors with a T_c of 6.7 K. The maximum T_c of 8.1 K is achieved for Au$_{0.15}$Sb$_{0.85}$. This T_c value is the highest among materials with the α-Po-type structure under ambient pressure.

![Figure 1: Crystal structures of (a)Ba$_2$Bi$_3$, (b)ZrP$_{2-x}$S$_x$, and (c)Au-Sb-Te alloy.](image)

*This work was partially supported by the Strategic International Collaborative Research Program (SICORP) of the Japan Science and Technology Agency (JST) and KAKENHI (Grant No. 26400379) from Japan Society for the Promotion of Science (JSPS).